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COHORT INTEGRATION (CI) THEORY 

 

A. Differentiation of the genotype-phenotype relationship (Evolutionary Action) 

We approach the problem of quantifying meaningful mutations in cancer populations from first 

principles. The genotype-phenotype relationship is modeled as a potential function (𝑓) that gives to each 

genotype location of the fitness landscape (𝛾) a phenotype fitness value (𝜑) (Fig. 1A) (Katsonis and 

Lichtarge 2014): 

𝑓(𝛾) = 𝜑       (1). 

To first order approximation, a genetic variant (𝛥𝛾) displaces the genome in the landscape, causing a 

change in the fitness potential (𝛥𝜑). We call this fitness effect of the variant its Evolutionary Action (EA), 

and model by differentiating Eq. 1 to obtain (Fig. 1B):  

𝑓!(𝛾) ∙ 𝛥𝛾 ≈ 𝛥𝜑 = 𝐸𝐴     (2), 

where 𝑓’ is the gradient (i.e., derivative) of the fitness potential 𝑓. To evaluate Eq. 2 for missense 

mutations, we approximate the two terms on the right-hand side. Namely, we quantify the fitness 

sensitivity of a sequence position to variations, 𝑓’, with ranks of the Evolutionary Trace algorithm 

(Lichtarge et al. 1996; Mihalek et al. 2004), and we quantify the magnitude of a mutation ∆𝛾 with ranks of 

the amino acid substitution odds (Fig. 1B-C) (Katsonis and Lichtarge 2014). Multiplication and 

normalization yield ∆𝜑, a continuous Evolutionary Action (EA) score that ranges from 0 to 100, where 0 

means no functional effect and 100 means maximal disruption with total loss of function. Intermediate 

values, such as 50±20, suggest significant perturbations that modify functionality rather than totally 

disabling it. 

B. Evolutionary Action yields the fitness effects of genetic variants 

In order to assess whether EA predicts the effect of coding variants in the context of cancer, as 

suggested before in TP53 (Neskey et al. 2015; Osman et al. 2015a; Osman et al. 2015b), we tested its 

agreement with experimental and clinical data on MLH1 (Raevaara et al. 2005), BRCA1, and BRCA2 

(Spurdle et al. 2012) mutations (Supplementary Fig. 1 A-C, p-value<0.01, Mann-Whitney U test). EA 
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could separate benign from deleterious variants better than alternative methods (Supplementary Fig. 1 D-

F). Moreover, thousands of TP53 mutations measured for their deleterious effect on p21WAF1 promoter 

response (Kato et al. 2003) showed that EA made 40-70% fewer false-positive predictions (Miosge et al. 

2015) than leading methods, depending on the threshold (Supplementary Fig. 1 G-H). These data show that 

EA evaluates mutational impact with greater specificity than the other methods. This performance is 

consistent with objective assessments by independent judges who alone possess the experimental gold 

standard data (Katsonis and Lichtarge 2017; Xu et al. 2017; Zhang et al. 2017; Katsonis and Lichtarge 

2019).  

C. Cohort Integration (CI) of the fitness effects 

Next, we complemented this differential model of mutations as individual micro-steps in the fitness 

landscape with an integration model, by summing all coding mutations in a cohort of individuals who share 

a trait of interest, namely cancer in this study. In theory, integration should reverse differentiation and yield 

back the genotype and phenotype relationship between genotype and phenotype, i.e. integrating Eq. 2 

should solve 𝑓. We proceed as follows. Individuals from a cancer cohort experienced variants that, in 

aggregate, resulted in a displacement away from the normal equilibrium location in the fitness landscape. 

The variants driving this displacement must necessarily be impactful in some affected individuals 

(Martincorena et al. 2017), so that genes with unexpectedly impactful variants in the cohort may be drivers 

of that phenotype. For cancer, tumor suppressor genes would be expected to harbor inactivating variants 

with large EA scores, oncogenes should harbor less impactful function altering variants, i.e., gain-of-

function variants with intermediate EA scores, and passenger mutations in innocent genes should appear 

random and unbiased. To find these differences we may integrate EA: 

∫ 𝑓′(𝛾)	
	 𝑑𝛾 = 𝜑(𝐶#)	         (3), 

where the integral is performed over all the somatic mutations in all genes from all cancer patients in a 

cohort of individuals, 𝐶#, with cancer type j. In practice, (3) is evaluated numerically through summation:  

∑ 𝑓′(𝛾) ∙ 𝑑𝛾$%&'()*	&+('()%,$	%-.!		 −	∑ 𝑓′(𝛾) ∙ 𝑑𝛾/',0%&	&+('()%,$
	 = 𝜑(𝐶#)	   (4),  
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where the negative term is an integration constant, chosen here to zero out random passenger mutations in 

unrelated to cancer genes. Next, since genes are the functional units of genotype, we rearrange the 

summations in Eq. 4 gene by gene, denoted by the index 𝑘: 

∑ 𝑓1′(𝛾) ∙ 𝑑𝛾	
.! −	∑ 𝑓1′(𝛾) ∙ 𝑑𝛾/',0%&	&+('()%,$

.! = 𝜑1(𝐶#)	   (5). 

Eq. (5) states that a given gene 𝑘 will make no contribution to the cancer phenotype 𝜑1(𝐶#) when its 

somatic mutations in the patient cohort 𝐶# are no different than random. However, if gene 𝑘 is a cancer 

driver gene, it should have a non-zero value in (5) and will contribute to 𝜑(𝐶#) (Fig. 1D). Therefore, the 

cohort integration approach detects the gene-by-gene selective pressure associated to the trait common in 

𝐶# (Fig. 1D, E).  
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SUPPLEMENTARY METHODS 

Experimental and clinical assessment of variant impact in cancer-associated genes. The 28 MLH1 

missense coding variants and their pathogenic significance were obtained from Raevaara et al. (Raevaara 

et al. 2005). The 107 BRCA1 missense coding variants and the 90 BRCA2 missense coding variants and 

their pathogenicity were collected from the BRCA Exchange database (http://brcaexchange.org/). The 

transactivity of p21WAF1 response-element for the 2,314 human TP53 point mutants assayed in yeast were 

obtained from Kato et al. (Kato et al. 2003).  

Coding variations from the 1000 Genomes Project and The Cancer Genome Atlas (TCGA). The 

23,810,164 human coding missense germline variations were obtained from the 1000 Genomes Project, 

phase 3 (http://www.internationalgenome.org/). Cancer somatic variants used in the primary analyses 

presented in this manuscript were obtained from The Cancer Genome Atlas (TCGA) data portal 

(https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp) in January 2015, when variants from 5,996 tumors 

across 20 cancers were available. The variant calls may vary between genome sequencing centers (GSCs) 

due to different exome capture technologies, filtering strategies, and variant calling methods each center 

employed. To acquire the highest confident variant calls, for the genomes that were analyzed by more than 

one GSC, only the calls that agreed in a majority of GSCs were considered for analysis. All variants were 

then re-annotated using ANNOVAR package (Wang et al. 2010). 645,359 missense, 51,759 nonsense, 

272,468 silent mutations, and 43,584 frameshift indels or other somatic point mutations were obtained. 

Updated MC3 TCGA variant information was downloaded on April 24, 2020 from National Cancer 

Institute Genomic Data Commons (https://gdc.cancer.gov/about-data/publications/mc3-2017). MC3 

variants were similarly re-annotated with ANNOVAR.   

Evaluation of functional impact of coding variants. The functional impact scores of coding variants in 

MLH1, BRCA1, and BRCA2 as evaluated by PolyPhen-2 (PPH2), MutationAssessor (MA), and CADD 

were obtained from the corresponding servers (PPH2: http://genetics.bwh.harvard.edu/pph2/; MA: 

http://mutationassessor.org; CADD: http://cadd.gs.washington.edu/). For CADD scores, we used the 

TransVar annotator (Zhou et al. 2015) (http://bioinformatics.mdanderson.org/transvarweb/) to get the 
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genome position and nucleotide change of each variant and then obtained the scaled CADD score (v1.3). 

For missense variants matching multiple genome positions and nucleotide changes, we calculated the 

average CADD score to represent the functional impact of the variant.  

Comparison of Cohort integrals of the coding variants. To compare the effects of coding variants and 

simulated random nucleotide changes on fitness, we performed the two-sample, one-sided Kolmogorov–

Smirnov (K-S) test and calculated the 𝑝-values, i.e., the lowest attainable significance levels at which the 

null hypothesis that the two samples are drawn from the same distribution can be rejected. K-S is a 

nonparametric test of the equality of continuous, one-dimensional probability distributions, measuring the 

maximum distance between the empirical distribution functions of the two samples. Therefore, the two-

sample K-S test is sensitive to differences in both the location and shape of the empirical cumulative 

distribution functions. Because the K-S test is sensitive to sample size, for large datasets including The 

1000 Genomes Project and TCGA, instead of using all coding variants, we randomly sampled 1000 

variants from the set of variants and performed the one-sided K-S test against 1000 simulated random 

variants. These analyses were repeated 1000 times to obtain average 𝑝-values. 

Random nucleotide changes and cancer-specific mutational signatures. To assess the impact of 

cancer-specific mutational signatures on the EA distributions, we calculated the frequency of each of the 

12 nucleotide substitutions (e.g. A to C) for the somatic mutations found in each of the 20 cancer types. 

Then, we obtained N random missense nucleotide changes (N was chosen to be 50, 100, 200, 400, 800, 

1600, 3200, and 6400, in 8 independent tests) and N missense nucleotide changes randomly weighted 

according to the mutational signature of each cancer type, throughout the human genome. The 

corresponding EA distributions of random versus the randomly-weighted missense variants were 

compared according to the two-sided, two-sample K-S test. Each test was repeated 50 times to obtain 

better representation of the expected p-value. None of the experiments resulted in significant p-values. 

Evaluation of the performance of CI. We evaluated the performance of CI against 10 other cancer gene 

identification methods on the same set of input cancer genomes by adapting, modifying, and enhancing 

previously suggested guidelines (Tokheim et al. 2016). The criteria were: (1) overlap with COSMIC 
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Cancer Gene Census (CGC Overlap); (2) overlap with predictions from the other methods (Method 

Consensus); (3) area under the Receiver Operating Characteristic curve (AUC-ROC) ; (4) area under the 

Precision-Recall curve (AUPRC); (5) discovery consistency over random two-way splits of the cohort 

from the top one to 100 genes (Consistency); (6) deviation from the expected uniform p-value distribution 

after removal of common predicted drivers (p-value deviation). Discovery gene lists for 2020+, TUSON, 

OncodriveFML, MutsigCV, MuSiC, OncodriveClust, OncodriveFM, and ActiveDriver were obtained from 

Dataset_S04 of Tokheim et al 2016. To generate the discovery gene list and additional performance 

metrics for dNdScv, a publicly available script was utilized (downloaded from GitHub on September 10, 

2021, https://github.com/im3sanger/dndscv). The MutPanning discovery gene list and performance metrics 

were generated on and performed according to the guidelines provided on the GenePattern plaform 

(https://www.genepattern.org/)(Dietlein et al. 2020). The Python library scikit-learn (version 0.24.1) was 

used to compute AUC-ROC and AUPRC values. For the AUC-ROC and AUPRC analyses, the true positive 

cancer genes were defined as the current Cancer Gene Census COSMIC Tier 1 somatic cancer genes 

(downloaded June 30, 2020; Table S2) and the predictions were restricted to genes ranked by all 10 

methods plus the CI and CI (with INDEL). 

Update of the Cancer Gene Census in COSMIC. 

To avoid using recently added cancer genes as true negatives in the Receiver Operating Characteristic 

analysis, we downloaded a more recent version of the COSMIC Cancer Gene Consensus on June 30, 2020. 

Inclusion criteria for cancer associated genes was defined by the presence of somatic mutations (missense, 

frame shifts, nonsense, splice site). Genes annotated as translocations, large deletions, amplifications, or 

other mutations were excluded unless they also met the somatic mutation inclusion criteria. We also 

excluded the gene TENT5C, because it was not ranked by all methods. This resulted into selecting 238 true 

positive cancer genes (see Table S2). 

GSEA Hallmark Gene Sets enrichment analysis. The GSEA Hallmark Gene Sets (Liberzon et al. 2015) 

were obtained from the Molecular Signatures Database (MSigDB) (Subramanian et al. 2005). The 

enrichment of the 460 candidate driver genes for the GSEA Hallmark Gene Set was calculated with the 



 7 

hypergeometric test against all genes. False discovery rates (q-values) were calculated with the Benjamini–

Hochberg procedure to correct for multiple testing (Storey and Tibshirani 2003). 

Ingenuity Pathway Analysis (IPA). The 460 candidate driver genes were analyzed by the canonical 

pathway analysis and the molecular and cellular functions analysis of the IPA software (Kramer et al., 

2014). The significance of the association between the candidate driver genes and the canonical pathways 

or the biological functions and diseases was measured by a Fisher’s exact test. The multiple-hypothesis 

testing was corrected with the Benjamini–Hochberg procedure (Storey and Tibshirani 2003). 

Similarity tree of cancer types and the candidate driver genes. The dendrogram of cancer types was 

based on the Jaccard distance of candidate driver genes, which is 1 - intersection over union of the 

candidate driver gene sets. The dendrogram of candidate driver genes was based on the CI q-values and it 

was calculated for 56 candidate cancer genes that were identified in multiple cancer types. Both 

dendrograms were constructed using the UPGMA (Unweighted Pair Group Method with Arithmetic 

Mean) hierarchical clustering method. 

Gold-standard gene set. A gold-standard cancer gene list (Table S4) is collected from: (a) the Cancer 

Gene Census in COSMIC database (v79), considering only the genes with mutation types as somatic, 

missense and nonsense, (b) the cancer genes predicted by TUSON explorer (Davoli et al. 2013) (manual 

confidence=4, Table S7A, S7B from the paper) (c) the 127 significantly mutated genes in all cancer types 

and 12 separate cancer types from Kandoth et al. (Kandoth et al. 2013) (Table S4 from the paper), (d) the 

125 driver genes from Vogelstein et al. (Vogelstein et al. 2013) (Table S2A from the paper), and (e) the 

260 predicted cancer genes from Lawrence et al. (Lawrence et al. 2014) (Table S2 from the paper). For 

gold-standard tumor suppressors and oncogenes (Table S11), we collected 54 “gold-standard” tumor 

suppressor genes and 18 “gold-standard” oncogenes that were identified by CI and were consistently 

agreed by two authoritative studies (Davoli et al. 2013; Vogelstein et al. 2013), or annotated as tumor 

suppressors or oncogenes in the Cancer Gene Census in COSMIC database (v79). Genes that were 

annotated as “oncogene/TSG” or marked as “germline”, “A (amplification)”, “D (large deletion)”, “T 

(translocation)”, or “O (other)” in CGC were excluded.  
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Support of cancer association (1): PubMed associations to cancer.  

PubMed association to cancer was determined by querying PubMed for each gene name along with the 

terms “cancer,” “protein,” and “gene.” The enrichment of a gene group for PubMed association was 

calculated with a hypergeometric test against the PubMed association of all genes with the same terms.  

Support of cancer association (2): Graph-based Information Diffusion (GID).  

We applied graph-based information diffusion (GID) (Shin et al. 2007; Venner et al. 2010; Lisewski et al. 

2014) to determine the association of a given candidate to known cancer genes in the protein-protein 

interaction network. The protein-protein network was obtained from the STRING database (Szklarczyk et 

al. 2015)(https://string-db.org/, human experimental network, v10). Gold-standard cancer genes (Table S4) 

that were present in the network were labeled (437 genes), and those labels were diffused to the genes in 

the network to compute the cancer association score, 

𝑓 = (𝐼 + 𝛼𝐿)23𝑦, 

where	𝑓 = {𝑓3, … , 𝑓,} is the score vector of each gene, 𝐼 is the identity matrix, 𝛼 is defined as 

1/‖𝐿‖3(Lisewski and Lichtarge 2010), L is the symmetric normalized Laplacian of the protein-protein 

network, and 𝑦 is the label vector where the gold-standard cancer genes were set as 1 and the rest of genes 

were set as 0. Greater 𝑓 score represents stronger associations of the given gene to known cancer genes. 

Since genes with higher connectivity tend to acquire greater	𝑓, we further normalized 𝑓 based on the 

network connectivity. For each gene we sequentially selected “control genes” of similar connectivity, 

starting from the genes with the same connectivity, and then with connectivity increment or decrement by 

1 each time, until at least 50 “control genes” were collected. The 𝑓 of these “control genes” (𝑓*) for the 

given gene were then used to compute the normalized score of the gene, a 

𝑠!"#" =
#𝑓!"#" − 𝜇$'

𝜎$
, 

where 𝜇* is the mean of 𝑓*, and 𝜎* is the standard deviation of 𝑓*. We considered the candidate genes with 

𝑠45,5 ≥ 1 as strongly associated with known cancer genes.  

Support of cancer association (3): Measuring positive selection with dN/dS ratio.  
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The nonsynonymous to synonymous rate (𝑑𝑁/𝑑𝑆) ratio was used to indicate the presence of selection on 

non-synonymous mutations, and values of 𝑑𝑁/𝑑𝑆 ratio above 1 indicate positive selection. The 𝑑𝑁/𝑑𝑆 

ratio is calculated as the ratio of the number of nonsynonymous cancer somatic mutations per non-

synonymous site to the number of synonymous cancer somatic mutations per synonymous site. The 

numbers of nonsynonymous and synonymous sites were quantified based on the simplistic assumption of 

unbiased codon usage and an equal rate for transition and transversions.  

Confidence score of cancer association. The confidence score of cancer association was based on 

agreement across the five cancer gene lists selected for constructing the “gold-standard” cancer gene list 

and support from PubMed literature, network linkage, and 𝑑𝑁/𝑑𝑆 ratio. Genes that were listed in the 

“gold-standard” cancer gene list were considered as high confidence, and confidence scores were based on 

agreement upon the cancer gene lists: genes appearing in all five lists were assigned a confidence score of 

“8”; in four, were scored “7”; in three, were scored “6”; in two, were scored “5”; and those appearing in 

only one list received a score of “4”. For genes not present in any of the five cancer gene lists, the 

confidence score was based on support from the literature (with more than 10 literature associations with 

cancer), association with known cancer genes in a network (GID normalized score, 𝑠 ≥1), and 𝑑𝑁/𝑑𝑆 

ratio above 1. Genes supported by all three types of evidence were assigned a confidence score of “3”; 

supported by two were “2”; and supported by one were “1”. The remaining genes were assigned a 

confidence score of “0.” 

CI oncogenes validation with the Avana CRISPR screen from the DepMap database. The data were 

downloaded from the DepMap database (https://depmap.org/) and consisted of the CRISPR (Broad Avana) 

screen data (Doench et al. 2016; Meyers et al. 2017), the cell lines in Avana table, and the merged 

mutations calls (coding region, germline filtered) from the CCLE (Barretina et al. 2012; Cancer Cell Line 

Encyclopedia and Genomics of Drug Sensitivity in Cancer 2015). Variants were scored using the EA 

equation and classified as “moderate EA” (30 <= EA score < 70) or “others” (Low EA variants 0 <= EA < 

30, high EA variants 70 <=EA<100, nonsense variants, and other uncategorized variants) categories. Gene 

sets include: (1) random: a random gene set consists of 100 randomly chosen genes from the 17,632 genes 
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screened in the Avana set from all cell lines, (2) COSMIC: Oncogenes listed in the Cancer Gene Census 

(v79) in COSMIC database (Futreal et al. 2004), genes that were annotated as “oncogene/TSG” or marked 

as “germline”, “A (amplification)”, “D (large deletion)”, “T (translocation)”, or “O (other)” were excluded, 

(3) CI PAN: oncogenes identified by CI in Pan-cancer analysis, and (4) CI Indiv.: oncogenes identified by 

CI in individual cancers. For CI Indiv oncogene set, the mapping between TCGA cancer identifier and 

DepMap cell line primary disease annotation are as follows: BLCA ('Bladder Cancer'), BRCA ('Breast 

Cancer'), CESC ('Cervical Cancer'), COAD ('Colon Cancer'), GBM ('GBM/Brain Cancer'), HNSC ('Head 

and Neck Cancer'), LIHC ('Liver Cancer'), OV ('Ovarian Cancer'), SKCM ('Skin Cancer'), STAD ('Gastric 

Cancer'), THCA ('Soft Tissue/ Thyroid Cancer', 'Thyroid Cancer'), UCEC ('Endometrial Cancer'). We 

compared the shift in essentiality within each gene set between variants in the “moderate EA” category 

(n=358, 474, 432, 115 for random, COSMIC, CI PAN, CI Indiv., respectively) and variants in the “others” 

category (n= 1309, 832, 795, 122 for random, COSMIC, CI PAN, CI Indiv., respectively), and the 

significance of the shift in Ceres Scores was measured using the Mann-Whitney U (Wilcoxon rank-sum) 

test. To test the tissue specificity of CI prediction, we compared the shift in essentiality of CI Indiv. gene 

set between the target cancer cell lines (n=115) and other cell lines data (n=122). In both cases only 

variants in the moderate EA category were considered and significance was measured using the Mann-

Whitney U test. See Table S12 for the Avana CRISPR screen data. 

Functional testing of CUL3 overexpression. A cDNA encoding human CUL3 (NM_003590) in the 

pENTR™221 vector (Thermo Fisher Scientific) was subcloned into the lentivrial destination vector 

pLenti7.3/V5 (Invitrogen), co-expressing the Emerald Green fluorescent protein marker, through Gateway 

recombination and then verified by DNA sequencing. The resulting CUL3 lentiviral vector or control 

lentiviral vector expressing bacterial lacZ were transfected into 293FT packaging cells with ViraPower 

packaging mix plasmids (Invitrogen) to produce replication defective virus. Equivalent titers (pre-

determined by tittering GFP expression) of CUL3 or lacZ expressing virus were inoculated into target cells 

by spinoculation after seeding cells the night before. Positively infected cells were purified by flow 

cytometry using the GFP marker (excluding the top and bottom 10% brightest or dimmest cells) and 
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allowed to recover for 3 days before plating into clonogenic assays or performing western blotting. For 

clonogenic assays, 1000 cells/well were seeded into 6-well plates and allowed to grow for 9 to 12 days 

before staining with crystal violet and counting colonies ≥ 50 cells with the assistance of ImageJ software. 

Antibodies used in western blots were anti-CUL3 (Cell Signaling Technology; #10450), anti-NRF2 (Cell 

Signaling Technology; #8882), and anti-total/cleaved PARP (Cell Signaling Technology; #9542). For cell 

cycle analysis, cells were trypsinized, washed in PBS, fixed at room temperature by addition of cold 70% 

ethanol, and stored at 4oC before adding propidium idodide/RNAase and analyzing by flow cytometry. 

Functional testing of DUSP16 overexpression. BT474, and HEK293 were obtained from ATCC and 

maintained in DMEM medium supplemented with high glucose (Life Technologies), 10% fetal bovine 

serum (FBS) (Thermo Fisher Scientific) with 50 units/ml penicillin and 50 µg/ml streptomycin (Life 

Technologies) in a humidified atmosphere of 5% CO2 at 37ºC. The DUSP16 plasmid (pLX302-MKP7-V5 

puro) was purchased from Addgene (#87771). The DUSP16 ORF was amplified with forward primer 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAACCATGGCCCATGAGATG

ATTGGAACTCA and reverse primer 

GGGGACCACTTTGTACAAGAAAGCTGGGTTCTACGTAGAATCGAGACCGAGGA and cloned 

into an inducible lentiviral expression system (from Dr. Zhu Songyang(Kim et al. 2017)) using Gateway 

BP and LR Clonase II (Life Technologies) according to the manufacturer’s instructions. The inducible 

lentiviral expression plasmid was amplified in DH5α E. coli (Life Technologies). Lentiviral particles were 

produced by transient transfection of pLend_empty and pLent_DUSP16 (1 µg) vectors along with 

packaging vectors pMD2.G (750 ng) and psPAX2 (250 ng) in 60% confluent HEK293T cells seeded in 6 

well plates. The lentiviral supernatant stocks were collected at 24 h and 48 h, pooled and passed through 

0.45 µm size filters. Lentiviral particles were incubated with BT474 and HEK293 cell lines for 24 h and 

then removed. Cells were subsequently selected by G418 (500 µg/ml) for 2 weeks to obtain stable cell 

lines. Selected cells were grown in media containing 100 µg/ml of G418 for further study. Cell 

proliferation assay. Stable BT474 and HEK293 cells were trypsinized and plated in 100 µl of growth 

medium at a density of 1,000 cells per well of a 96 well plate. Cells were incubated for 24h at 37ºC, added 
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with 0.5 µg/ml of doxycycline (Fisher BioReagents) and further incubated at 37◦C up to 3 days. Cell 

density was monitored with CCK-8 (Dojindo Molecular technologies, Inc) according to the manufacturer’s 

protocols. Because doxycycline has a slight effect on growth rates (Moullan et al. 2015), cell counts were 

normalized to growth rates of doxycycline-treated control lines without an inducible vector. Colony-

formation assays. Stable cells containing empty vector or a wildtype DUSP16 gene were seeded at a 

density of 1000 cells/well in 6 well plates in 3 ml of medium in the presence or absence of 1 µg/ml of 

doxycycline. Following incubation for 1-2 weeks, the colonies were stained with 0.5% crystal violet and 

scanned with an EPSON 4180 photo stylus scanner. In vitro scratch assay and Cell migration assay. 

Stable BT474_vehicle control and BT474_DUSP16 cells were grown in 12-well plates until about 70–80% 

confluency was reached at which point a 200 μL pipette tip was used to create a scratch/wound with clear 

edges across the width of a well. Wells containing cells were treated with 0.5 µg/ml doxycycline and 

photomicrographs were taken over a 48 h time period. An Olympus CK40 inverted microscope was used 

to measure and photograph the cell migration from the wound/scratch edge every 24 hr. After stable 

BT474 cells were trypsinized, cells (50,000 cells) were resuspended in DMEM containing 0.1% BSA with 

or without 0.5 ug/ml of doxycycline, added to the top of a Transwell (Corning, NY) migration chamber (24 

well, 8 µm pore) and allowed to migrate for 18 h in the presence of DMEM containing 10% FBS. Residual 

cells were removed from top of the membrane with cotton ball and the cells on the underside of membrane 

were stained with crystal violet for 5 min and then visualized using a bright field microscope. Expression 

of DUSP16, p53, PARP, pcJUN (S63), pJNK and JNK. Cells were lysed with lysis buffer (40 mM Tris-Cl, 

pH 7.5, 150 mM NaCl, 0.6% CHAPS, 0.5 mM EDTA, 0.2% NP-40 and 1% glycerol) with protease 

inhibitor cocktail (Calbiochem) and phosphatase inhibitor cocktail (Sigma Aldrich). The protein 

concentration of cell lysate was measured with the Bio Rad reagent (Bio-Rad). The same amount of 

protein was boiled for 5 min in Laemmli sample buffer and separated by SDS–PAGE. Proteins were 

separated by 4–12% bis-Tris NuPAGE (Invitrogen) as indicated, transferred to nitrocellulose membranes, 

and immunoblotted with specified antibodies. Antibodies against DUSP16, p53, PARP, pcJUN (S63), 

pJNK and total JNK were purchased from Cell Signaling Technologies (#5523; #9982; #9532; #9261; 
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#4668; #9252, respectively). Anti-GAPDH was purchased from Thermo Scientific (MA5-15738). 

Quantitative real time PCR (qRT-PCR). Stable cells containing empty vector or a DUSP16 gene were 

grown in 12 well plate until 70-80% of confluency and treated with 100 nM of PMA (phobol-12-myristate-

13-acetate, from EMD MilliporeSigma) for 1 h. Cells were lysed with using TRIzol® Reagent (Life 

Technologies) and total RNA was extracted. RNA was reverse transcribed using the qScriptTM cDNA 

SuperMix (Quanta BioSciences) as per manufacturer instructions. qRT-PCR analysis was performed in a 

StepOne Plus system with SYBR Green (Applied Biosystems). Gene expression levels were normalized 

against β-actin and analyzed using the ΔΔCt method based on the manufacturer’s manual. Generation of 

DUSP16 depleted stable cell lines using CRISPR-Cas9. The DUSP16 CRISPR-Cas9 constructs (pLenti-

U6-sgRNA-SFFV-CAS9-2A-Puro) were purchased from ABM (K0443005). The lentiviral plasmids were 

amplified in DH5α E. coli (Life Technologies). Lentiviral particles were produced by transient transfection 

of each plasmid (1 µg) along with packaging vectors pMD2.G (750 ng) and psPAX2 (250 ng) in 60% 

confluent HEK293T cells seeded in 6 well plates. The lentiviral supernatant stocks were collected at 24 h 

and 48 h, pooled and passed through 0.45 µm size filters. Lentiviral particles were incubated with stable 

BT474-DUSP16 and HEK293-DUSP16 cell lines for 24 h and then removed. Cells were subsequently 

selected by puromycin (2 µg/ml) for 2 weeks to obtain stable cell lines. Selected cells were grown in media 

containing 0.5 µg/ml of puromycin for further study. 

 

SOFTWARE AVAILABILITY 

The source code of the Cohort Integration (CI) algorithm is available as a python script supplemental file: 

CohortInteg_SupplementalMaterial.py 

Instructions for installation and running CI are available as a text supplemental file: README.txt.  

The method is also available at: http://cohort.lichtargelab.org/. 
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SUPPLEMENTARY FIGURES 

 
Supplementary Figure 1. Evolutionary Action (EA) correlates with the functional and clinical 

impact of mutations in cancer-associated genes. a-c, Boxplots comparing the EA scores of the 

pathogenic (grey) and benign (white) coding variants in a, MLH1, b, BRCA1, and c, BRCA2. d-e, The 

receiver operating characteristic curves for the separation of pathogenic and benign variants in d, MLH1, 

e, BRCA1, and f, BRCA2 by EA (red), PolyPhen-2 (Adzhubei et al. 2010) (PPH2, purple), 

MutationAssessor (Reva et al. 2011) (MA, green), and CADD (Kircher et al. 2014) (blue) scores. g, The 

transactivation activity of 2,314 human TP53 point mutants assayed in yeast (y-axis) for the p21WAF1 

promoter as function of the EA score, using a single cutoff at EA=50 (red), and dual cutoff of EA≤30 for 

benign mutations and EA≥70 for deleterious mutations (green) to calculate false positives (FP). h, The 

percentage of false positives of EA with single cutoff ("EA (50)”) or dual cutoff (“EA (30/70)”), CADD, 
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MA, and PPH2.  

 

 
Supplementary Figure 2. The distribution of EA scores of cancer somatic mutations. a, The 

distribution of EA scores for cancer somatic mutations in the non-cancer gene DNAH5. The dashed lines 

correspond to simulated random amino acid changes in DNAH5. b-c, The distributions of EA scores for 

2,578 simulated random nucleotide changes that resulted in missense TP53 substitutions (gray bars) and 

for 6,400 simulated missense substitutions generated with nucleotide changes following the mutational 

signatures (ratios of single nucleotide transitions) observed in each of 20 cancer types in b. Nucleotide 

changes following trinucleotide mutational signatures also resulted in non-significant p-values (data not 

shown). The two-sided Kolmogorov–Smirnov p-values for comparing each distribution of the cancer type 

signature with the distribution of simulated random nucleotide changes in c. The whisker plots represent 

the variability of 50 independent runs for each cancer type. d-e, The distribution of the EA scores of the 

CDH1 cancer somatic missense mutations compared to random CDH1 mutations (dashed line) in d, breast 

invasive carcinoma (BRCA, p-value=0.002) and stomach adenocarcinoma (STAD, p-value=0.03), and e, 
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the other 18 cancer types (combined p-value=0.9). The p-values of cohort integral differences between the 

observed and simulated random mutations were calculated by the two-sample Kolmogorov–Smirnov test.  

 

Supplementary Figure 3. Performance of CI (with and without INDEL) and ten state-of-the-art 

methods in identifying cancer-driving genes. a, The number of cancer genes predicted by each method. 

b, The area under the Receiver Operating Characteristic curve for each method. c, The deviation between 

observed and theoretical p-values for each method. d, The fraction of predicted cancer genes overlapped 

with the Cancer Gene Census (Forbes et al. 2016) for each method. e, The fraction of predicted cancer 

genes that were also predicted by one or more other methods. f, Top genes consistency as the number of 

the top genes varies from 1 to 100 for each method. The area under the curve of each evaluated method is 

given in the parentheses. g, The area under the Precision-Recall curve for each method. 
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Supplementary Figure 4. Cancer type specific benchmark analysis. a, Patient counts and number of 

Tier 1 and Tier 2 COSMIC cancer specific genes for 13 cancer types found within the test population from 

Tokheim et al 2016. b, Cancer specific AUROC (top plot) and AUPRC (bottom plot) values for CI (w/ 

INDEL), dNdScv, and MutPanning presented in boxplot format showing the first, median, and third 

quartile values across 11 cancer types (LIHC and CESC have a single COSMIC cancer specific gene and 

were omitted from these analyses). Whiskers extend to include points within 1.5 times the interquartile 

range. Red dashed lines indicate method performance across the full test population (pan-cancer analysis 

shown in Figure 3A). Markers are shaded according to cancer cohort size. True positive genes were 

defined using COSMIC genes from panel a. c, Consistency Curve AUC values for CI (w/ INDEL) (top 

plot) and dNdScv (bottom plot) across 13 cancer types plus the full test population (pan-cancer = PAN). A 

logarithmic curve was fitted to the data and the correlation coefficient R2 is shown in the plot legend.    
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Supplementary Figure 5. Down-sampling analysis of CI.  We performed 10 random samplings for 

increments of 100 tumor exomes (x-axis) and compared the driver gene predictions using these subsets to 

the predictions using the whole input exomes. Only genes that were reported as cancer associated by at 

least four of five reference sources were considered (n=58, see Table S4). The y-axis shows the percentage 

of true predictions from a given subset over true predictions from all available exomes.  
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Supplementary Figure 6. 460 candidate cancer driver genes identified by CI. a, GSEA Hallmark Gene 

Sets enrichment of all 460 candidate genes identified in pan-cancer or in specific cancers. b, Ingenuity 

Pathway Analysis (IPA) functional categories of the 460 candidate cancer driver genes identified by CI. c, 

The fraction of gold-standard genes identified by CI, when the gold-standard genes were defined by the 

overlap of five or less references (Table S4). d, The fraction of genes with more than ten PubMed literature 

associations to cancer (black), one to ten PubMed associations (grey), and no PubMed association (white) 

for all genes and for the 313 that are unique to CI. e, The number of genes linked (black bar) or not (white 

bar) to the “gold-standard cancer genes” (Table S4) according to the STRING protein-protein interaction 

network, when we considered all STRING genes and the 273 that are unique to CI and have a STRING 

entry (40 genes did not match any STRING database entry). f, The number of genes with dN/dS value either 

greater than 1 (black bar) or not (white bar) for all genes, the 313 unique-to-CI genes, and the 68 unique-

to-CI genes with no PubMed literatures association to cancer. g, Confidence of cancer association for the 

460 candidate genes. h, Confidence of cancer association for different levels of CI q-value. Non-

significant genes (q-value ≥ 0.1) are shown in grey. The box extends from the 25th to 75th percentiles, and 

the whiskers from the 10th to 90th percentiles. 
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Supplementary Figure 7. Classifying tumor suppressors and oncogenes with sLOF and sGOF. a, The 

average sLOF index and b, the average sGOF index of 54 known tumor suppressor genes (TSG), 18 

known oncogenes (OG), and 18,143 other genes. The p-values were calculated by Tukey's multiple 

comparisons test. The error bars represent the standard deviation. c, The receiver operating characteristic 

curve of classifying tumor suppressors and oncogenes with sGOF index. d, Accuracy of classifying tumor 

suppressors and oncogenes by a binary separation with sGOF threshold that varies from -1 to 1. 
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Supplementary Figure 8. Genome-scale CRISPR gene dependency screen (Tsherniak et al. 2017) 

validated tissue specificity for CI oncogenes. Cell lines harboring variants of moderate EA score in CI 

individual cancer genes showed a statistically significant shift toward essentiality in target individual 

cancer types than other cancer lines. Statistical significance was calculated with Mann–Whitney U test. 

****: p<0.0001. 
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Supplementary Figure 9. Overexpression of DUSP16 inhibited cellular migration by 

dephosphorylation phosphor-JNK and its downstream target c-JUN. a, Overexpression of DUSP16 

inhibited cellular migration in BT474 cells by Transwell migration assay. b, Effect of dose-dependent 

expression of DUSP16 on p38 and JNK phosphorylation. Increased expression inhibited JNK and p38 

phosphorylation proportionally. Inhibition of JNK phosphorylation was more significant than p38 

phosphorylation. c, Overexpression of DUSP16 inhibit JNK phosphorylation and c-JUN phosphorylation 

at basal and anisomycin stimulation. 
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Supplementary Figure 10. CI flowchart. A flowchart delineating the steps to identify cancer driver 

genes with CI and to classify tumor suppressors and oncogenes with sLOF and sGOF indices. 
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SUPPLEMENTARY TABLES 

 
Table S1. Nucleotide substitution ratios observed in each of 20 cancer types (mutational signatures) 

  
 

Table S2. COSMIC Tier 1 Cancer Gene Census genes (downloaded on June 30, 2020) 

 
 
 

 

 

A->C A->G A->T C->A C->G C->T G->A G->C G->T T->A T->C T->G Ti/Tv
BLCA 0.011 0.043 0.015 0.04 0.12 0.23 0.3 0.16 0.045 0.01 0.024 0.0095 1.45
BRCA 0.054 0.058 0.022 0.065 0.084 0.2 0.24 0.1 0.07 0.018 0.041 0.046 1.17
CESC 0.012 0.024 0.0082 0.047 0.11 0.25 0.31 0.15 0.048 0.0056 0.02 0.011 1.54
COAD 0.03 0.076 0.015 0.069 0.018 0.3 0.31 0.017 0.069 0.013 0.065 0.022 2.97
GBM 0.018 0.074 0.023 0.049 0.039 0.3 0.33 0.037 0.046 0.021 0.051 0.016 3.03
HNSC 0.014 0.067 0.032 0.069 0.078 0.23 0.25 0.095 0.084 0.02 0.04 0.012 1.45
KIRC 0.045 0.092 0.053 0.092 0.056 0.16 0.18 0.06 0.089 0.055 0.081 0.036 1.06
KIRP 0.046 0.1 0.057 0.08 0.068 0.15 0.17 0.07 0.066 0.057 0.095 0.042 1.06
LAML 0.015 0.078 0.019 0.06 0.041 0.29 0.33 0.033 0.048 0.026 0.047 0.019 2.85
LGG 0.017 0.11 0.021 0.039 0.048 0.27 0.32 0.04 0.04 0.017 0.058 0.02 3.13
LIHC 0.034 0.14 0.087 0.089 0.043 0.14 0.15 0.043 0.11 0.055 0.072 0.029 1.02
LUAD 0.017 0.056 0.057 0.14 0.066 0.14 0.14 0.086 0.22 0.031 0.033 0.013 0.59
LUSC 0.017 0.064 0.047 0.13 0.072 0.16 0.16 0.091 0.18 0.027 0.035 0.012 0.73
OV 0.031 0.081 0.048 0.081 0.085 0.18 0.19 0.092 0.093 0.037 0.052 0.032 1.01
PRAD 0.028 0.087 0.027 0.051 0.043 0.28 0.28 0.04 0.061 0.023 0.051 0.027 2.33
READ 0.046 0.046 0.012 0.11 0.013 0.26 0.3 0.015 0.12 0.012 0.037 0.032 1.79
SKCM 0.0094 0.022 0.011 0.0092 0.0085 0.51 0.37 0.0077 0.008 0.011 0.021 0.011 12.18
STAD 0.038 0.071 0.016 0.064 0.021 0.29 0.3 0.023 0.065 0.016 0.061 0.032 2.63
THCA 0.017 0.11 0.037 0.047 0.07 0.23 0.21 0.064 0.056 0.091 0.044 0.022 1.47
UCEC 0.043 0.062 0.0081 0.12 0.0084 0.26 0.28 0.0078 0.13 0.0067 0.05 0.033 1.83
Pancancer 0.025 0.057 0.023 0.071 0.043 0.29 0.28 0.051 0.084 0.018 0.041 0.021 1.99

Cancer Type Signatures (nucleotide rubstitution ratios)

ABL1 BAP1 CDC73 DDX3X FGFR2 IDH1 LATS2 MYD88 PIK3R1 PTPRC SMAD2 TGFBR2
ACVR1 BARD1 CDH1 DICER1 FGFR3 IDH2 LEF1 MYOD1 PIM1 PTPRT SMAD3 TNFAIP3
ACVR2A BAX CDK12 DNM2 FGFR4 IKBKB LRP1B NCOR1 PLCG1 QKI SMAD4 TNFRSF14
AKT1 BCL6 CDKN1B DNMT3A FLT3 IL7R LZTR1 NCOR2 POLD1 RAC1 SMARCA4 TP53
ALK BCL9L CDKN2A DROSHA FOXA1 IRS4 MAP2K1 NF1 POLE RAD21 SMARCB1 TP63
AMER1 BCOR CEBPA EGFR FOXL2 JAK1 MAP2K2 NF2 POLQ RB1 SMARCD1 TRAF7
APC BCORL1 CHD4 EP300 FUBP1 JAK2 MAP2K4 NFE2L2 POT1 RBM10 SMO TRRAP
AR BIRC3 CIC EPAS1 GATA1 JAK3 MAP3K1 NFKBIE PPM1D RET SOCS1 TSC1
ARHGAP26 BRAF CNOT3 ERBB2 GATA2 KCNJ5 MAP3K13 NOTCH1 PPP2R1A RHOA SPEN TSC2
ARID1A BRCA1 COL2A1 ERBB3 GATA3 KDM5C MAPK1 NOTCH2 PPP6C RNF43 SPOP TSHR
ARID1B BRCA2 CREBBP ERBB4 GNA11 KDM6A MAX NPM1 PRDM1 RPL10 SRC U2AF1
ARID2 BTK CRLF2 ESR1 GNAQ KDR MED12 NRAS PREX2 RPL5 SRSF2 UBR5
ASXL1 CACNA1D CSF3R ETNK1 GNAS KEAP1 MEN1 NT5C2 PRKACA SALL4 STAG2 USP8
ATM CALR CTCF EZH2 GRIN2A KIT MET PAX5 PRKAR1A SDHA STAT3 VHL
ATP1A1 CARD11 CTNNB1 FAS H3F3A KLF4 MLH1 PBRM1 PTCH1 SETBP1 STAT5B WT1
ATR CASP8 CUX1 FAT1 H3F3B KLF6 MPL PDGFRA PTEN SETD2 STK11 XPO1
ATRX CBL CXCR4 FAT4 HIF1A KMT2C MSH2 PHF6 PTK6 SF3B1 SUFU ZFHX3
AXIN1 CBLB CYLD FBXO11 HIST1H3B KMT2D MSH6 PHOX2B PTPN11 SFRP4 TBL1XR1 ZRSR2
AXIN2 CD79A DAXX FBXW7 HNF1A KRAS MTOR PIK3CA PTPN13 SH2B3 TBX3 TENT5C *
B2M CD79B DDR2 FES HRAS LATS1 MYCN PIK3CB PTPRB SIX1 TET2

* excluded from the ROC analysis

Cancer Gene Census gold-standard genes 
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Table S3. Method evaluation 

 

 

 

Table S4. Gold-standard cancer genes 

See Supplemental_Table_S4.xlsx file 

 

Table S5. 460 candidate drivers 

See Supplemental_Table_S5.xlsx file 

 

Table S6. Candidate driver genes for the MC3 version of the TCGA data 

See Supplemental_Table_S6.xlsx file 

 

 

 

 

 

 

 

Method Number of 
Significant Genes

CGC 
Overlap

Method 
Consensus

p-value 
Deviation

Consistency AUROC AUPRC

CI 98 0.56 0.91 0.09 0.81 0.79 0.39
CI (with INDEL) 159 0.43 0.86 0.54 0.85 0.81 0.43
MutPanning 125 0.55 0.90 0.24 0.86 0.67 0.44
dNdScv 153 0.50 0.92 0.17 0.87 0.76 0.43
MutsigCV 158 0.37 0.67 1.15 0.40 0.72 0.25
2020+ 208 0.40 0.81 0.14 0.69 0.88 0.45
TUSON 243 0.37 0.86 0.74 0.89 0.79 0.47
ActiveDriver 417 0.06 0.24 1.24 0.26 0.58 0.06
OncodriveClust 586 0.07 0.34 1.48 0.39 0.72 0.16
OncodriveFML 679 0.12 0.41 0.86 0.56 0.79 0.29
MuSiC 1975 0.05 0.20 2.56 0.61 0.77 0.12
OncodriveFM 2600 0.04 0.32 1.75 0.55 0.70 0.20
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Table S7: Overlap of candidate genes between the original and the MC3 versions for the CI with 

INDEL analysis 

 

 

Table S8. IPA canonical pathway 

See Supplemental_Table_S8.xlsx file 

 

Table S9. Molecule Cell Function 

See Supplemental_Table_S9.xlsx file 

 

Table S10. IPA 313 novel genes 

See Supplemental_Table_S10.xlsx file 

 

Table S11. Gold-standard tumor suppressor oncogene 

See Supplemental_Table_S11.xlsx file 

 

Table S12. Avana CRISPR screen data 

Cancer Type
Number Significant 
Genes in MC3 Analysis

Number Significant Genes 
in Original Analysis

Number Overlapping MC3 
Genes with Original 
Analysis

Fraction of Original Genes 
Recovered in MC3 Analysis

Hypergeom
etric p-
value

Hypergeometric
-log10 (p-value)

 BLCA !" 19 16 0.84 1.84E-38 37.73
 BRCA #$ 40 25 0.63 5.87E-66 65.23
 CESC #% 20 11 0.55 1.43E-28 27.85
 COAD $! 49 31 0.63 2.17E-60 59.66
 GBM %& 11 9 0.82 4.52E-28 27.34
 HNSC &' 45 32 0.71 1.22E-82 81.91
 KIRC %( 13 9 0.69 1.42E-27 26.85
 KIRP " 3 3 1.00 9.28E-11 10.03
 LAML # 13 2 0.15 8.35E-06 5.08
 LGG %) 13 13 1.00 7.20E-41 40.14
 LIHC %$ 7 5 0.71 6.20E-14 13.21
 LUAD )$ 23 17 0.74 3.32E-36 35.48
 LUSC *( 26 10 0.38 8.46E-21 20.07
 OV %( 6 4 0.67 2.46E-12 11.61
 PRAD %& 9 9 1.00 9.05E-29 28.04
 READ %$ 17 10 0.59 2.14E-26 25.67
 SKCM !!* 75 53 0.71 4.53E-63 62.34
 STAD '& 3 3 1.00 1.10E-07 6.96
 THCA ' 5 5 1.00 7.69E-16 15.11
 UCEC &)# 72 42 0.58 1.33E-52 51.88
 PAN !&$ 249 143 0.57 1.82E-156 155.74
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See Supplemental_Table_S12.xlsx file 

 

Table S13. HNSC CI predictions 

See Supplemental_Table_S13.xlsx file 

 

Table S14. CI predicted oncogenes 

See Supplemental_Table_S14.xlsx file 
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